南中医等:银杏二萜内酯通过拮抗PAFR和调节SIRT1STAT3抑制氧化应激诱导的PC12神经元衰老研究

详细介绍

  衰老是一个不可避免又都会存在的生命过程 [1] , 也是一个由多种生物和遗传途径调控的复杂的生理过程 [2] 。衰老直接影响机体寿命,引发几乎所有年龄相关疾病,最重要的包含免疫系统疾病、神经退行性疾病、心血管疾病、肌肉骨骼疾病和癌症等 [2] 。寻找靶向衰老机制和改善健康延长寿命的药物已成为该领域的研究热点 [2] 。细胞衰老是衰老的一个重要特征,可分为复制性衰老( reproductive senescence ,RS )、应激诱导的早衰(stress-induced premature senescence ,SIPS )、胚胎发育过程中发生的程序性衰老(programmed senescence ,PS )、癌基因诱导的衰老(oncogene-induced senescence ,OIS )和治疗诱导的癌细胞衰老(treatment induces cancer cellular senescence ,TIS )等[3] 。体外实验一般会用连续传代的RS 细胞和药物刺激导致的SIPS 细胞[3-4] 。RS 过程相对缓慢,因此常用诱导SIPS 的方式加速细胞衰老,其中H2O2 是最常用的SIPS 诱导剂之一,对多种细胞衰老都有效[5] ,因此被选作本实验的细胞衰老诱导剂进行氧化应激诱导的衰老研究。

  沉默调节蛋白 1 (Sirtuin 1 ,SIRT1 )能够最终靠抑制氧化应激、减少炎症反应和恢复线粒体功能障碍等,治疗衰老相关疾病,被广泛研究为减轻衰老诱导的疾病的潜在治疗靶点[6-7] 。在氧化应激过程中,SIRT1/ 信号转导和转录激活蛋白3 (signal transducer and activator of transcription 3 ,STAT3 )信号通路发挥着重要的作用,调节细胞的增殖和凋亡[8-10] 。因此推测H2O2 诱导的衰老机制可能与SIRT1/STAT3 信号通路有关。此外,血小板活化因子受体(platelet activating factor receptor ,PAFR )也是参与氧化应激的一个重要靶点,拮抗PAFR 能抑制血小板聚集,减轻炎症、氧化应激和细胞凋亡[11] ,同样具备极其重大的研究价值。研究之后发现,PAFR 与SIRT1 具有反向相关性[12-13] ,这预示着拮抗PAFR 可能通过调节SIRT1 来减轻衰老。神经营养素是一种蛋白质家族,能够在一定程度上促进神经元存活,改善突触功能和神经递质释放,并促进中枢和外周神经系统内轴突的可塑性和生长,常见于神经损伤的研究[14] 。据报道,SIRT1 可以激活脑源性神经营养因子(brain-derived neurotrophic factor ,BDNF ),促进神经元生长和损伤修复[15] 。因此本研究还检测了BDNF 以及与其功能相似的神经营养因子3 (neurotrophin 3 ,NT3 )。这2 种神经营养因子常在神经损伤研究联合检测[16] 。

  中医药因其滋补保健且无严重不良反应的特点,在抗衰老研究中慢慢的受到重视。研究报道,具有抗氧化活性的中药天然产物能够最终靠一系列信号系统防治氧化应激和氧化还原来源的应激源诱发的多种疾病(包括衰老),并改善能够减缓细胞衰老的许多存活基因和功能,发挥其抗衰老作用 [17] 。银杏二萜内酯(ginkgo diterpene lactone ,GDL )注射液是国际上首个以PAFR 为靶点的上市创新中药,主要由银杏内酯A (ginkgolide A ,GA )、银杏内酯B (ginkgolide B ,GB )、银杏内酯K (ginkgolide K ,GK )组成,能够抑制血小板聚集和氧自由基,常用来医治脑缺血再灌注损伤[18] ,具有活血通络的功效[19] 。虽然GDL 常用于研究氧化应激的病理损伤[20] ,其拮抗PAFR 在治疗神经退行性疾病中也有明确的效果[21] ,但国内外暂未报道其在抗衰老中的 作用,因此推测GDL 有几率会成为一种潜在的具有抑制氧化应激诱导的衰老的药物。本研究探讨GDL 有没有拮抗氧化应激诱导的神经元衰老的作用,并进一步研究其作用的机制,以拓展GDL 的其他药用价值。

  PC12 细胞复苏后,用含10% FBS 的DMEM 培养基培养。待细胞长满80% ,弃去培养液,加入PBS 轻轻荡洗,弃去荡洗液,加入胰酶,消化细胞,弃去消化液,并加入含10% FBS 的DMEM 培养基终止消化,离心弃上清,加入含10% FBS 、1% 青霉素和链霉素的DMEM 培养基,轻轻吹打成单细胞悬液,传代于新的培养皿中,于37 ℃、5% CO2 培养箱中培养,每2 天更换1 次培养液,取对数生长期的PC12 细胞用于实验。

  取对数生长期的 PC12 细胞,以2 ×105 个/mL 接种于96 孔板,待细胞完全贴壁后,用0 ~600 μmol/L H2O2 处理24 h ,或在300 μmol/L H2O2 处理前3 h 加入0 ~100 μg/mL GDL ,对照组为不含药物的培养基,随后各孔更换新鲜培养基并加入10 μL CCK-8 工作液,在37 ℃培养箱中避光孵育4 h 。用酶标仪在450 nm 处测定吸光度(A )值,计算细胞存活率。

  取对数生长期的 PC12 细胞,以2 ×105 个/mL 接种于24 孔板的爬片上,待细胞贴壁后,用300 μmol/L H2O2 处理24 h ,或在300 μmol/L H2O2 处理前3 h 加入30 μmol/L PAF 抑制剂WEB-2086 或50 μg/mL GDL ,另设置不含药物的对照组。给药结束后用PBS 洗涤爬片3 次,用试剂盒中的固定液常温孵育15 min ,然后在37 ℃的染色溶液中孵育24 h 。最后,用PBS 洗涤3 次,覆盖载玻片后用正置显微镜直接成像,用Image J 软件分析,计算β- 半乳糖苷酶阳性细胞率。

  取对数生长期的 PC12 细胞,以2 ×105 个/mL 接种于24 孔板的爬片上,待细胞贴壁后,用300 μmol/L H2O2 处理24 h ,或在300 μmol/L H2O2 处理前3 h 加入50 μg/mL GDL ,另设置不含药物的对照组。给药结束后用PBS 洗涤爬片3 次,用4% 多聚甲醛常温孵育15 min ,随后用PBS 清洗3 次,最后直接用DAPI 染料进行染色,室温孵育5 min 。最后,用PBS 洗涤样品3 次,覆盖载玻片后用50% 甘油封片。在荧光显微镜下直接成像,用Image J 软件做多元化的分析,计算平均细胞核体积。

  取对数生长期的 PC12 细胞,以6 ×105 个/mL 接种于培养皿中,待细胞贴壁后,用300 μmol/L H2O2 处理24 h ,或在300 μmol/L H2O2 处理前3 h 加入30 μmol/L PAF 抑制剂WEB-2086 或50 μg/mL GDL ,另设置不含药物的对照组。给药结束后加入细胞裂解液,于冰上裂解30 min ,4 ℃、12 000 r/min 离心10 min ,取上清液,测定蛋白含量。加入5 ×SDS-PAGE 蛋白上样缓冲液,蛋白变性后,蛋白样品经10% 或12% 十二烷基硫酸钠- 聚丙烯酰胺凝胶电泳,转至PVDF 膜,孵育对应的一抗过夜,然后孵育二抗,利用BeyoECL Moon 增强化学发光试剂盒显影,采用凝胶成像仪、Quantity One 软件进行可视化,Image J 软件分析目标条带灰度值。

  数据处理采用 GraphPad prism 8.0.2 软件,所有数据以 表示。采用Students’t 检验两组间的数据比较,当3 组或3 组以上比较时用单因素方差分析后,采用Dunnett’s 检验。

  3.3.1 GDL 给药条件 在H2O2 处理前给予不同质量浓度GDL 干预3 h ,随后再与H2O2 共同处理细胞24 h ,细胞活力出现不同程度恢复(图3 ),与模型组比较,50 μg/mL GDL 显著上调细胞活力(P <0.05 )。因此后续实验GDL 质量浓度选择50 μg/mL ,预给药3 h 后继续给药24 h 。

  3.5.1 GDL 抑制PC12 神经元的凋亡 SIRT1/ STAT3 信号通路的激活可以诱导细胞凋亡。用TUNEL 染色法检测细胞凋亡,如图6 所示,与对照组比较,模型组凋亡细胞数量增多(P <0.01 );与 模型组比较, GDL 组凋亡细胞数量明显减少(P <0.05 ),提示GDL 抑制氧化应激引起的细胞凋亡。

  3.5.2 GDL 促进神经营养因子的分泌 神经营养因子能够在一定程度上促进神经元的生长和损伤修复,在神经元的生长过程中起保护作用。如图7 所示,与对照组比较,模型组BDNF 和NT3 蛋白表达水平降低(P <0.05 );与模型组比较,GDL 可以显著上调BDNF 和NT3 的表达(P <0.05 );各组NGF 无明显变化。

  衰老的主要特征之一是细胞衰老,是一种对不同损伤刺激做出一定的反应的永久性细胞周期停滞状态。衰老细胞的过度积累会对再生能力造成负面影响,促进衰老相关疾病的发作并发展促炎环境 [22] 。与正常细胞相比,衰老细胞可以表现出更多的衰老特征:在细胞形态学上,细胞体积增大且形状不规则[23] ,生长在固体表面时明显扁平,细胞核增大、形状不规则和异染色质聚集[24] 。其次,衰老细胞还具有细胞周期阻滞的特点,其特征是p16 、p21 、p53 蛋白标记增加[23,25-26] 。同时衰老细胞磷酸化视网膜母细胞瘤蛋白减少,半胱氨酸天冬氨酸蛋白酶-3 (cystein-asparate protease-3 ,Caspase-3 )蛋白表达升高[27] 、核膜结构蛋白Lamin B1 减少导致核完整性和稳定能力下降,继而导致其他核变化[4] ;并且衰老细胞pH 依赖的β- 半乳糖苷酶活性也会增加。H2O2 通常被作为诱导氧化应激的条件,现已被发现其可使细胞显现出衰老的普遍特征,已被大范围的使用在制备细胞衰老模型[28-30] 。本实验结果为,细胞经过H2O2 处理后β- 半乳糖苷酶染色率、细胞核体积及p21 、p53 表达增加,同时Lamin B1 表达降低,表明成功构建了H2O2 诱导的PC12 细胞衰老模型。而GDL 的干预可大大降低模型组β- 半乳糖苷酶阳性细胞率,下调p21 、p53 并上调LaminB1 的表达,抑制细胞核体积的增大。GDL 具有抗氧化应激诱导的PC12 神经元衰老的作用。

  SIRT1 参与细胞调节衰老和老化的过程,是一个抗衰老的重要靶点[31-32] 。不仅如此,SIRT1 还参与氧化应激过程,其中SIRT1/STAT3 信号通路调控细胞增殖和凋亡,已被大范围的应用于氧化应激病理研究。另一个调节氧化应激重要的靶点PAFR ,已被发现可被SIRT1 下调,抑制氧化应激,预防PAFR 引起的相关疾病[13-14] 。本研究之后发现,血小板活化因子拮抗剂抑制剂WEB-2086 可以明显地增加SIRT1 的表达;H2O2 激活PAFR 后能抑制SIRT1 的表达。因此在PAFR/SIRT1 通路中,PAFR 也可能位于上游,调节SIRT1 蛋白。因此H2O2 诱导的氧化应激衰老过程,可能与SIRT1/STAT3 信号通路有关,并受PAFR 的调控。

  衰老细胞仍具有活性,一般认为其对凋亡有抵抗力,它们的代谢与自噬调节紧密关联。尽管如此,仍有少数氧化应激诱导早衰的研究发现,细胞衰老显现出凋亡的特征 [33] 。据报道,下调SIRT1 能够在一定程度上促进STAT3 的磷酸化[34] ,随后STAT3 信号的传导激活下游的p53 ,诱导细胞衰老、促进凋亡[35] 。这与本实验结果一致,H2O2 诱导的神经元衰老可以激活p53 的表达,增加TUNEL 凋亡染色。而GDL 的干预可以逆转这一现象,抑制PC12 细胞的凋亡。

  神经营养因子是一种能够在一定程度上促进神经元生长、保护神经元的蛋白家族。除了参与氧化应激的 SIRT1/ STAT3 信号通路外,SIRT1/BDNF 信号通路[16] 也参与了本实验PC12 细胞的衰老过程。除了BDNF ,本研究还检测了常用于同时检测的NT3 和NGF 的表达。结果发现,在PC12 细胞的衰老过程中,GDL 能够在一定程度上促进BDNF 和NT3 的分泌,对神经元起到保护作用,但NGF 不参与此过程。

  综上, GDL 能够在一定程度上促进神经营养因子的分泌,减轻神经元凋亡,具有延缓氧化应激诱导的细胞衰老的作用,其机制可能与调控PAFR 和SIRT1/STAT3 信号通路有关。本研究推测了PAFR 与SIRT1/STAT3 信号通路和氧化应激诱导的细胞衰老之间的关系,验证了GDL 在氧化应激诱导的细胞衰老中的作用,为天然药物在抗衰老的应用中提供了新的见解,为拓展GDL 的药用价值提供了理论和实验依据。然而,本研究仅进行了体外实验,缺乏体内研究,下一步将建立动物实验模型,进一步确认PAFR 与衰老的关系以及GDL 的抗衰老作用。

  来 源:杜雨芯,操娇娇,张倩霞,杨颖博,吴 伟,肖保国,肖 伟. 银杏二萜内酯通过拮抗PAFR和调节SIRT1/STAT3抑制氧化应激诱导的PC12神经元衰老研究 [J]. 中草药, 2023, 54(9):2793-2891.

  【福利时刻】购买细胞及相关实验,扫码或加微信(1278317307)入群。

  本公众号已与浙江慧通测评动物实验中心搭建紧密的合作伙伴关系:该动物中心已获得动物使用许可,如您需要含药血清制备-成分分析、灌胃给药、造模、药理、毒理以及相关实验(sci)外包服务,欢迎联系我们!

  【福利时刻】毕业季找工作点击链接,多家企业30W+年薪工作招聘任你选(赶紧点击这里可以进入注册,上传简历吧~ ) 。